BayesQR.jl
Bayesian quantile regression (BQR) models in Julia.
Installation
Pkg.add("BayesQR")
Function Documentation
BayesQR.bqr
— Functionbqr(y::AbstractVector{<:Real}, X::AbstractMatrix{<:Real}, τ::Real, niter::Int, burn::Int)
Runs the Bayesian quantile regression with dependent variable y
and covariates X
for quantile τ
. Priors currently implemented are the Normal and Laplace.
Arguments
σᵦ::Real
: variance of π(β)prior::String
: "Normal" or "Laplace"
bqr(f::FormulaTerm, df::DataFrame, τ::Real, niter::Int, burn::Int)
Runs the Bayesian quantile regression with dependent variable y and covariates X constructed from f
and df
.
Fitting BayesQR models
Two methods can be used to fit a BQR: bqr(formula, data, τ, niter, burn)
and bqr(y, X, τ, niter, burn)
. Their arguments must be:
formula
: a StatsModels.jlFormula
object referring to columns indata
.data
: a table in the Tables.jl definition, e.g. a data frame; NAs are droppedX
a matrix holding values of the independent variable(s) in columnsy
a vector holding values of the dependent variable
Both method returns a MCMCChains.jl Chains
object